PROCESS FLOW DESIGN OF THE THERMOCHEMICAL CONVERSION OF FOOD WASTE IN GASIFIER

 

Title Page

Certification/Declaration

Approval Page

Dedication

Acknowledgement

Abstract

Table of content

 

Chapter 1

Introduction

1:1 Introduction

1:2 Background of the Study

1:3 Statements of Problems

1:4 Objectives of the Study

1:5 Research Question

1:6 Study of the Hypothesis

1:7 Significance of the Study

1:8 Justification of the Study

1:9 Scope of the Study

1:10 Definition of Terms

 

Chapter 2

Literature Review

2:0 Introduction

2:1 Conceptual Clarification

2:2 Theoretical Framework

2:3 Literatures on the Subject Matter

 

Chapter 3

Research Methodology

3:0 Area of Study

3:1 Source of Data

3:2 Sampling Techniques

3:3 Method Data Collection

3:4 Method of Data Analysis

3:5 Reliability of Instrument

3:6 Validity of Instrument

3:7 Limitations of the Study

 

Chapter 4

Data Analysis

4:0 Introduction

4:1 Finding of the Study

4:2 Discussion of the Study

4:3 Summary

 

Chapter 5

Summary, Conclusion and Recommendation

5:0 Summary of Findings

5:1 Conclusion

5:2 Recommendations

5:3 Proposal for Further Studies

Gasification is a process that converts organic- or fossil fuel-based carbonaceous materials into carbon monoxide, hydrogen and carbon dioxide. This is achieved by reacting the material at high temperatures (>700 °C), without combustion, with a controlled amount of oxygen and/or steam. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel. The power derived from gasification and combustion of the resultant gas is considered to be a source of renewable energy if the gasified compounds were obtained from biomass.

The advantage of gasification is that using the syngas (synthesis gas H2/CO) is potentially more efficient than direct combustion of the original fuel because it can be combusted at higher temperatures or even in fuel cells, so that the thermodynamic upper limit to the efficiency defined by Carnot’s rule is higher or (in case of fuel cells) not applicable. Syngas may be burned directly in gas engines, used to produce methanol and hydrogen, or converted via the Fischer–Tropsch process into synthetic fuel. Gasification can also begin with material which would otherwise have been disposed of such as biodegradable waste. In addition, the high-temperature process refines out corrosive ash elements such as chloride and potassium, allowing clean gas production from otherwise problematic fuels. Gasification of fossil fuels is currently widely used on industrial scales to generate electricity.

Sharing is caring!

Post Views: 0